موقع مدرسة الزنية الثانوية للبنات
نرحب بكم اجمل ترحيب بمنتدى مدرستنا مدرسة الزنية الثانوية للبنات
شاركو معنا للافادة والاستفادة
تحيات معطرة من ادارة المدرسة Smile

موقع مدرسة الزنية الثانوية للبنات

اهلا وسهلا بك يا (زائر) في منتدى مدرسة الزنية الثانوية للبنات
 
الرئيسيةالبوابةاليوميةس .و .جبحـثالأعضاءالمجموعاتالتسجيلدخول

شاطر | 
 

 معادلة الدائرة

اذهب الى الأسفل 
كاتب الموضوعرسالة
thekrayat
طالبــه
طالبــه
avatar

عدد المساهمات : 140
تاريخ التسجيل : 18/04/2011
العمر : 22

مُساهمةموضوع: معادلة الدائرة   الجمعة أبريل 29, 2011 10:26 am

الدائرة في المرحلة الثانوية تختلف جذرياً عنها في المرحلة الإعدادية فهنا ندرس الصور المختلف لمعادلة الدائرة وعلاقتها بدائرة أخرى أو مستقيم من حيث الوضع وأمور أخرى تركز في غالبيتها على المعادلات، ولكن سنستعين بالعديد من الأفكار التي دُرست في المرحلة الإعدادية ليس في الدائرة فقط بل في الهندسة بصورة عامة.
سنقسم موضعنا هذا إن جاز لنا التعبير (المسابقة) لعدة أقسام
1) معادلة الدائرة بصورها المختلفة
2) علاقة دائرة بدائرة أخرى أو مستقيم
3) التماس
4) المحل الهندسي
=======================================
معادلة الدائرة التي مركزها ( د ، هـ) ونصف قطرها نق هي:
( س – د)2 + ( ص – هـ)2 = نق2 نق نصف قطر الدائرة
نحصل على هذه المعادلة من استخدام قانون البعد بين نقطتين
مربع البعد بين النقطتين ( س1 ، ص1) ، ( س2 ، ص2) هو:
مربع البعد بين النقطتين = ( س2 – س1)2 + ( ص2 – ص1)2
وبتطبيقه على البعد نق الواصل بين ( س ، ص) ، ( د ، هـ)
مع ملاحظة ( د ، هـ) أي نقطة في مستوى الإحداثيات الديكارتيه والشكل المرفق توضيح لذلك.


معادلة الدائرة التي مركزها نقطة الأصل ونصف قطرها نق
وفي حال كون د = 0 ، هـ = 0 أي ( د ، هـ) تكون نقطة الأصل
فإن معادلة الدائرة تؤول إلى س2 + ص2= نق2
وهي معادلة الدائرة التي مركزها نقطة الأصل ونصف قطرها نق
ويمكن الحصول عليها مباشرة من الشكل باستخدام نفس القانون
السابق وهو البعد بين نقطتين.

معادلة الدائرة التي طرفا قطر فيها ( س1 ، ص1) ، ( س2 ، ص2) هي:
( س – س1) ( س – س2) + ( ص – ص1)( ص – ص2) = 0
يمكن الحصول عليها من:
ق< د = 90ه < د مرسومة في نصف دائرة لاحظ الشكل
ميل ب د × ميل د هـ = – 1 تعامد مستقيمين
الميل لمستقيم مار بنقطتين = فرق الصادات ÷ فرق السينات

ص – ص1 ص – ص2
ـــــــــــــــــــ × ـــــــــــــــــــــ = – 1
س – س1 س – س2


( س – س1) ( س – س2) = –( ص – ص1)( ص – ص2)

( س – س1) ( س – س2) + ( ص – ص1)( ص – ص2) = 0

الصورة العامة لمعادلة الدائرة:
من: ( س – د)2 + ( ص – هـ)2 = نق2 وبفك الأقواس نحصل على
س2 + ص2–2 د س –2هـ ص + د2+ هـ2– نق2 = 0 وبوضع د= – ل ، هـ = – ك ، د2 + هـ2– نق2 = حـ يكون:
س2 + ص2 + 2 ل س + 2 ك ص + حـ = 0 مركزها (– ل ، – ك) ونصف قطرها نق حيث نق2= ل2 + ك2 – حـ
لاحــــــــظ:
1) لإيجاد المركز من المعادلة نجعل معامل س2= معامل ص2= 1 ثم المركز = (– معامل س÷2 ، – معامل ص÷2)
2) إذا مرَّ محيط الدائرة بنقطة الأصل فإن حـ = 0 والعكس صحيح لأن س = ص = 0 وتؤول المعادلة إلى:
س2 + ص2 + 2 ل س + 2 ك ص = 0
الرجوع الى أعلى الصفحة اذهب الى الأسفل
معاينة صفحة البيانات الشخصي للعضو
يسرى الحسبان
معلمة
معلمة
avatar

عدد المساهمات : 134
تاريخ التسجيل : 18/04/2011

مُساهمةموضوع: رد: معادلة الدائرة   الجمعة أبريل 29, 2011 1:42 pm

:788/9: ]
الرجوع الى أعلى الصفحة اذهب الى الأسفل
معاينة صفحة البيانات الشخصي للعضو
Reham Olimat
ادارة المنتدى
ادارة المنتدى
avatar

عدد المساهمات : 258
تاريخ التسجيل : 02/12/2010
العمر : 22

مُساهمةموضوع: رد: معادلة الدائرة   الجمعة أبريل 29, 2011 2:03 pm

:MMN:
شكرا على الطرح الرآئع




الرجوع الى أعلى الصفحة اذهب الى الأسفل
معاينة صفحة البيانات الشخصي للعضو http://znaiyajo.mam9.com
love dream
طالبــه
طالبــه
avatar

عدد المساهمات : 1027
تاريخ التسجيل : 23/04/2011

مُساهمةموضوع: رد: معادلة الدائرة   السبت أبريل 30, 2011 6:45 am

:788/9:
الرجوع الى أعلى الصفحة اذهب الى الأسفل
معاينة صفحة البيانات الشخصي للعضو http://www.banaat.com/vb/
اسلام سعود
طالبــه
طالبــه
avatar

عدد المساهمات : 850
تاريخ التسجيل : 23/04/2011
العمر : 20

مُساهمةموضوع: رد: معادلة الدائرة   السبت مايو 07, 2011 8:04 am

الرجوع الى أعلى الصفحة اذهب الى الأسفل
معاينة صفحة البيانات الشخصي للعضو
 
معادلة الدائرة
الرجوع الى أعلى الصفحة 
صفحة 1 من اصل 1

صلاحيات هذا المنتدى:لاتستطيع الرد على المواضيع في هذا المنتدى
موقع مدرسة الزنية الثانوية للبنات  :: دروس الصف التاسع :: الرياضيات-
انتقل الى: